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ASSESSING SOURCES AND SINKS OF CARBON DIOXID~

IN A CORN CROP USING A MOMENTUM BALANCE APPROACH

E. Ro Lemon and J. Lo Wright

. .. . ,.:.", .:.:1.(.:. .
. INTRODUCTION

In two previous communications (Wright and Lemon 1966at 1966b) an
aerodynamic method was described for evaluating the source and sink

distribution of carbon dioxide in plant communitieso Some data were
presented for a corn crop, giving quantitative information about
photosynthetic fixation and respiration release of carbon dioxide, layer

by layer, within the crop.

In the method, CO2 concentration profiles and winds peed measurements of
the bulk air were made within and above tne crop. The analysis of the
windspeed measurements to calculate diffusivity coefficients required
tedious analysis of windspeed fluctuations and the application of
complicated statistical and mixing length theories. It is our purpose
to present here a simpler method, requiring vertical profiles of mean
windspeed, vertical profiles of mean carbon dioxide concentration and
representative vertical profiles of the foliage surface area density of

the plant community.

THEORY

If one knows the vertical flux intensities of the CO2 diffusion streams
across two horizontal planes within a plant community, the difference be-
tween the two intensities provides knowledge of the source strength
(respiration) or sink strength (photosynthesis) of the layer of foliage
between the two planes. The vertical flux intensity of CO2 across each
plane at height z above the ground is given by

P = K dC/dz [1]
c

2
where P is the flux intensity taken to be positive downwards in g/cm /sec,
Kc is the CO2 diffu8ivity coefficient ift cm2/sec, dC/dz is the CO2
concentration gradient and C is the CO2 density in the air in g/cm3. The

. gradient dC/dz is obtained by taking the slope of a mean CO2 concentration
profile at the specified height z. It is in the evaluation of Kc wherein
the difference lies between the previous reported method and the one
reported here. The simpler one is called a momentum balanceo

Momentum is extracted out of the wind stream by plant surfaces. This is
evident since air has mass and the wind velocity is slowed to zero as the
ground is approached. Leaf-waving and stalk-bending are manifestations of
the frictional dras .f the wind on foliage surfaces. The flux intensity of
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the vertical exchange of horizontal momentum out of the wind stream is
defined by a diffusion-like equation similar to the one for C02~

T = p K du!dz [2]
m

where T is the flux intensity of momentum exchange at some plane z indynes!cm2; p is the density of the air (0000118 g!cm3 at 25 C and .

1013 mb); ~ is the diffusivity coefficient for momentum in cm2!sec;
du!dz is the windspeed gradient or the slope of the mean windspeed profile.
at level z; and u is the mean horizontal wind velocity in cm2!secc

In the application of the momentum balance method one assumes that Km =
Kc~ while ~n 1S detcrmi~ed from Equation [2] by evaluating T and du/dz
at the appropriate lev~l of Zc

For this, two measurements are required in the field; the distribution of
foliage surface area of the plant community as a function of height and
the mean windspeed profile for say 10 to 20 minutes~ extending from the
ground to well above the plant community 0 Figure 1 schematically illustrates
a generalized mean winds peed profile and a foliage area density profi1ec
The figure also illustrates the method of evaluating TZ at a specific level
Zo First» an evaluation of Th at the top of the vegetation (which is the
total flux intensity of momentum) is made from an analysis of the log dis-
tribution of the wind velocity above the vegetation by

C ku ~2th = P ~n (z - D) /zo_1 [3]

where k is the von Karman constant (004), D is the community displacement
parameter in cm and Zo is the roughness coefficient in cmo Second, tz is
evaluated by "partitioning" the momentum with depth into the plant community
to the specific level z by

h
TZ - TO - th - P 1 CD F u2 dz [4]

z

where CD is the drag coefficient (dimensionless); F is the leaf or foliage
area density, and h is the height of the community, The drag at the soil
surface» T , is considered to be negligible in dense plant communities, thus

0it is assumed that TO = Oc

The diffusivity coefficient is finally evaluated once knowing TZi by taking
the slope du/dz of the mean windspeed profile at the specific heiaht z and
solving for Km in Equation [2]0
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We shall take up the mechanics of evaluating the drag coefficient in
Equation [4]. CD. as well as the other parameters~ after giving the

procedure for making the field measurementso

PROCEDURE

The necessary measurements were made on a clear day in a 20-acre cornfield
on September 11,1963 at Ellis Hollow (Ithaca)~ New Yorko The site used
was that of the previous study (Wright and Lemonp 1966a and 1966b) 0 The
corn was planted in 29-inch north-south rows at a density of 269000 plants
per acreo The crop was a good one. having been well fertilized and
amply supplied by favorable rains. All leaves were still green and
evidently quite active photosynthetically despite the late dateD

I. Wind measurements. The equipment for measuring the wind and the
procedures for processing the data are identical to those reported earlier
except that it is not necessary to perform the tedious analysis of the
short-time fluctuations of th~ windspeed recordings. As mentioned earlier
only the mean velocity profiles are required here. BrieflYi the procedure
consisted of measuring totalized cup revolutions over 10-minute test
periods with cup anemometers (Thornthwaite Assoc.) placed above the crop
at the following heights above the groundp 465~ 385~ 325 cm. The crop
height, hp was 285 cmo Mean windspeed within the crop was determined by
integrating over the same 10-minute test periods the continuous recorder
traces obtained from the outputs of heated thermocouple anemometers
(Hastings~Raydist) placed at the following levels above the groundp 325,

275~ 225~ l75~ 125, 75 cmo

2. Samplin~ procedure for CO2o In the estimation of carbon dioxide
exchange rates reported here many improvements have been made over the
sampling and analytical methods reported earliero In the earliest work
(Lemon, 1960), carbon dioxide profiles were obtained above the crop by
simultaneously sampling the air above the plants at several levels using
single hose openings as point sinks at each levelo No attempt was made
to obtain horizontal spacially integrated samples even though the samples
were time integrated~ In more recent work concerning CO2 profiles within
the vegetated canopy of a com crop (Wright and Lemon, 1966b) a spacially
integrated sampling procedure was usedo In their studyo however~ air
samples were taken in time sequence at the several levels above the ground
and not simult~eously" Thus the samples may have been,non-representative
due to time fluctuations in carbon dioxide concentration but not to
.pacial fluctuations in carbon dioxide" This error was minimizedo none-
theless, by the fact that the sampling time was; a) relatively long (ten
minutes) -compared to the usual 1/3 to 1/2 cycles per minute short time
CO2 concentration fluctuations commonly experienced in our cornfield
studies, and b) relatively short compared to the diurnal fluctuations in

CO2 concentrations 0 In order to avoid these previous possible sampling
errors due to the time and space fluctuations in C02~ the following

A~mn1ina nrocedure was developedo
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A series of perforated sampling hoses suspended horizontally and
connected to the suction side of individual air pumps provided the means
of spacially sampling the air at the various desired levels within and
above the crop canopy. Continuous and simultaneous subsampling from the
exhaust side of each pump into storage in 24-liter PVC beach balls
provided a time integration over the 10-minute sampling periods,

Common PVC garden hose of 2 cm ID was used both for sampling and lead-
hoseso A 7.5 meter section of hose with 0.1 cm diameter holes drilled .
every 15 cm acted as the horizontal spacial sampler at a given level,
each being connected to a 30-meter lead-in hose running downwind to an
instrument trailer where the pumps and analytical equipment were locatedo
The 7.5 meter sampling hoses were suspended on a wire frame at right A;~t

~
angles to the corn rows and prevailing wind. They were located at the ;:

following levels above the ground: 35. 95~ 135, l65t 190t 225. 250.280
and 310 cm, The 225 cm sampling hose was positioned immediately above
the upper large leaves of the canopy with topmost smaller leaves and corn
tassels extending about another 50-60 cm above 0

Experience has proven that a relatively high lead-in air flow rate is
important when using plastic tubing because of diffusion of CO2 through
the tubing walls if the lead-in is permitted to lie on the ground. Also
the inevitable slow evolution of organic gases out of the hose wells
contaminates the sample air to a serious degree if flow rates are too low
and/or lead-in too long. Fortunatelys PVC garden hose is convenient.
inexpensive. relatively impervious to CO2J and of sufficient diameter to
easily incorporate an internal heater wire to prevent water vapor
condensation. all in addition to permitting acceptable airflow rates with
proper pumps, (We have found9 however~ that mice chew heated PVC hose
during the cool seasons.) The lead-in hoses were connected to suction
pumps each having a capacity of delivering 28 liters per minuteo Thus
satisfactory sample air can be continuously delivered with little delayo

Mention has been made of preventing water vapor condensation in sample
and lead-in hoses with internal heater wiresc Two reasons are emphasized;
a) condensed water absorbs and evolves CO2~ imparting historical effects
on any given sample~ and b) differential evaporation or condensation of
water in the sampling hoses create wide difference in water vapor content
in the air samples, This causes serious analytical problems when using
infrared analysis for CO2' The fact is~ that it is impossible for most
commercial infrared CO2 analyzers commonly used to completely discriminate
between water vapor and CO2, Thus water vapor acts, to some degree as
CO2. giving an erroneously high measurement for CO2c For studies of the
sort reported here where small CO2 gradients are measured~ water vapor
errors have to be reckoned with. Two alternatives are open~ either remove

4
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the water vapor from the sample air before analysis or correct the
measurements by knowing both instrument discrimination characteristics
and water vapor content of the sample. In these studies the former was
employed by absorbing the water vapor in magnesium perchlorate before

. the sample air passed into the storage balloons. Magnesium perchlorate
is a preferred absorber. (The same cannot be said for silica gel because
it imparts historical effects through absorption and evolution of CO2

. to a given sample of air.) (See Tamm. Eo and Krzysch. Go. 19590)

30 Analytical procedure for CO?o Since there were only six pumps
available and nine sampling levels. cyclic sampling and analytical
procedures were used. That is. six sampling levels. ioe. 35. 95. 135. 165.
190 and 225 cm were first sampled simultaneously. the air being stored in
six balloons then subsequently analyzed. During the analysis of these
first six samples a second series of six levels. ioe. 165. 190.225.250.
280 and 310 cm were sampled. filling a second series of six balloons to
be subsequently analyzed. It was found convenient to make simultaneous
wind and carbon dioxide runs of 10-minute periods twice each hour. Thus
each series of six sampling levels for CO2 was sampled once each hour
and each series was sampled roughly 30 minutes aparto

Upon filling a given series of six balloons, analyses immediately began.
This consisted of attaching two balloons to individual aquarium pumps
which were matched to give equal flow rates into the two cells of the
infrared analyzer. Flow rates were continuously monitored and adjusted
to deliver air at one liter per minute. The outlets of the two cells
of the analyzer were to ambient atmospheric pressure. The air that was
sampled at the 225 cm level was used as reference. thus the 225 cm balloon
filled each given series provided reference air to the "reference" cell.
while each of the other 5 sampling level balloons in a given series was
analyzed in turn by connection to the "sample" cell. During the analysis
of each of the 5 samples against reference. lead hoses from the aquarium
pumps to the analyzer were reversed at least twice. in effect mechanically
reversing sample and reference cells of the analyzer. This provided a
check on each analysis and served to note any possible shift in instrument

zero.

The instrument used for the differential analyses is a spacially designed
unit. having a range of ~ 12.5 ppm with a sensitivity of ~ 002 ppmo

Other details of the instrument are reported elsewhere (Wright and Lemon.
1966b). Calibration of this instt'umentand also another unit used to
measure absolute concentrations of CO2 was accomplished with commercially
available standard gases. Experience has shown that both instruments
become very stable after 2 or 3 weeks of continuous operation~ requiring
only occasional check on calibration span and zero.

S
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During the period of experiment reported here~ air from the 225 cm
level was continuously monitored for absolute concentrations of
carbon dioxide. This enabled the expression of all profiles on an

absolute basiso

Since the present study concerns the vertical distribution of activity
within the canopY0 emphasis is given to those series of samplings
that provide complete profiles within the canopyo Inspection of
Figure 2 revealsv however v the inclusion of one profile above the
canopy purely for interest<> One can also notice that experimental
points have been plotted at the 310 cm level for many of the "within
canopy profileso" These 310 cm points are to be viewed with cautiona
however~ since they were obtained 30 minutes following the indicated
time when the "within canopy'O profiles were takeno Invariably the
"above canopy'U 310 cm point fell to the right of the extrapolated
profile line in the morning and to the left in the afternoon as one
would predicto. They. are only included here as a guide and do not
affect the "within canopy'U profiles or subsequent calculationso

40 Leaf area densitvmeasurementso The surface area of leaves and
stalks in 50 cm height increments was measured on each of twenty
representative individual plants giving a total of 20 area measure-
ments for each of five height increments, The surface area of stalk and
tassel in the 6th or uppermost height increment was also estimated.
The 20 plants chosen for area measurements were individually selected on
the basis of height and stem diameterp being '!mean" or "standard" pl~ts
chosen out of the large populationo The leaf area was determined on a
one-side basis by measuring length and width and multiplying by the
factor 0075 and estimating what part of each leaf fell within the specific
50 cm incrementso Stalk area was estimated from stem diameters and
treating them as cylinders 0

Knowing the mean leaf area (one side) and mean stem area per plant
within eAch 50 cm increment we plotted the sum of these for each
increment on a cumulative basis from the top of the crop downwardso A
smooth curve was then constructed through the pointso From this cumula-
tive curve and the population density it was possible to construct a
representative foliage area density profile as found in Figures 3 and 40

5. Data analysiso Experience has indicated that more representative
wind profiles can be obtained by combining numerous short-time
profileso For this reason all the wind profiles taken during the day
were combined in a normalizing procedureo Figure 4 presents the

mean normalized procedure.

6
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A systematic computer analysis of several hundred log wind profiles
taken throughout the growing seaon in 1961 over a similar corn crop at
the Ellis Hollow site provides us with good representative values for

the log profile wind parameters required in Equation [3]. The plant community
displacement parameter D, turns out to be 140 cm and the roughness
coefficient Zo is 15 cm. Experience has also indicated that Equation [3]

does not have to be corrected for non-isothermal conditions when soil

. moisture is plentiful.

We now need to return to the problem of determining the diffusivity
coefficient Km' from the momentum balance. We have made the assumption
that all of the momentum extracted from the wind stream is related to the
foliaRe area and that the soil surface plays a negligible role in dense
vegetation. Thus the total momentum or shear, The can be defined by:

h
Th = I P CD F u2 dz. [5]

Now we have to make another assumption. In order to provide an estimation
of the drag coefficient, CD' we have to assume that it is a constant,
independent of depth into the vegetation and independent of windspeed. It

can be evaluated from

Th/PC = [6]
D h

i F u2 dz
0

if one knows the total drag Th' the leaf area density, F, distribution with
height and the mean windspeed, ui distribution with height. CD is thus a

mean drag coefficient for whole crop. It is truly a plant community
physical parameter, characterizing the community's ability to extract

momentum out of the air stream.

It was mentioned earlier that the total drag Th is evaluated from Equation
[3]. The integration required in the denominator of Equation [6] can be
graphically performed by determining the area under the curve constructed
from the product of F u2 in its distribution in height from z - 0 to
z - h. Figure 3 gives the results; it really represents the distribution

of drag in the corn crop.

Through successive analysis of many levels of z, now having evaluated CD'
a vertical distribution of momentum flux intensities, 'z' can be evaluated
from Equation [4]. In turn, vertical profiles of the diffusivity

7
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coefficient, K t can be constructed from Equation [2] or
m

T I (Th/P) - CD J: F u2 dz
z P z

K =. [7]
m du/dz du/dz

Figure 5 presents the mean normalized profile of the diffusivity
coefficient distribution with height for the dayo The absolute
values at the top of the community (Kz/Kh - 100) are given for the

specific hours of the day in tabular form in the figurec It should be
pointed out that these values are five orders of magnitude larger than
molecular diffusivity values in airo Even near the base of the corn
crop the values are three orders greater than molecular valueso Thus
turbulence must be the chief means of gaseous transfer even at the
bale of plant communitieso It should also be pointed out that
attenuation of diffusivity with depth into the canopy is almost linear
to more than half way to the ground on a semi-log ploto

With the assumption that ~ = Kc we are now ready to utilize gradients,
dC/dz~ from the CO2 profiles in Figure 2~ to calculate CO2 flux
intensities, P~ of several levels of z from Equation [1]0 The results

are presented in Figure 60

Figure 6 presents the quantitative strength of the upward and downward
diffusion streams of carbon dioxideo Positive values on the left-hand
side of the figure indicate downward diffusiono Negative values indicate;
upward diffusion on the right of the zero axiso It can be noted here ".~

that there was very little CO2 coming from the soilo Returning to ¥~
Figure 2 it can be seen that there was very little increase in CO2 as
the soil is approachedo More sampling points very near the soil surface
are needed~ however~ to clarify this pointo In any event an increase in
CO2 upward flux intensity coming up into the canopy is evidence that
the lower portion of the canopy was respiringo At the level where there
is neither a decrease or increase in upward flux~ depending upon the ~,

hour of the day~ the leaves were at the light compensation point at
this position of the canopy 0 Above this level the upward flux decreases~
since photosynthesis is taking CO2 out of the airo A level is soon
reached where no longer is the CO2 diffusing upward but necessarily CO2
is diffusing downward from the atmosphere 0 It is rather interesting to
realize that the CO2 that is respired from the ground and the lower
portions of a canopy may be reabsorbed in the upper photosynthesizing
portions during the dayo The 1755 hour profile indicates that
reabsorption was not quite complete since there was an upward flux

throughout the whole profileo

I 8
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By taking the slopes of the profiles in Figure 6 one can construct flux
divergence profiles or source and sink profiles of carbon dioxideo
Figure 7 presents some representative profiles of this naturec The
left-hand side of the axis represents the rate at which CO2 is being

. absorbed in photosynthesis in a unit volume of canopy spaceo On the
right of zero is the quntitative rate that CO2 is being generated
through respiration in a unit volume of canopy spacec The qualitative

" discussion of the curves in Figure 6 is now made clear on a quantitative
basis in Figure 7 insofar as defining the levels of photosynthesis and
respiration. The light compensation point is the zero axis profile
intercept in this figureo Maximum respiration is apparently near corn ear

: levelp while maximum photosynthesis is near maximum leaf area densityo

A much deeper analysis of these last profiles is possible by referring
to the radiation studies made simultaneously in the same field by Allen
and Brown (1965). They made a careful study of the mean radiation
distribution in the canopy in the 003 to 0.7~ wave length interval
(visible or "photosynthetically active" radiation)" From their work
one is able to obtain both radiation flux intensities and flux divergence
(absorbed light) distributions with height in the canopyc From the
later. photo efficiency curves can be constructed knowing both the flux
divergence for CO2 and flux divergence for lighto Two midday representa-
tive efficiency curves are presented in Figure 80. Both bracket local
noon (1210 EST) about equallyo On the basis of absorbed visible
radiation, the maximum efficiency of the canopy falls between 12% and
18% in the region of maximum leaf area densityo Efficiency drops.off
both above and below this region" Speculation about unfavorable water
relation in the top portion of the community during the afternoon
might give explanation to the lower efficiency of the upper portions of
the 1358 curve compared to the 0955 curve 0

As for further differences between the two curves let us now look at some
light intensity response curves. These are plotted in Figure 90 Here
are plotted CO2 exchange rates (and energy equivalence) on a leaf area
basis as a function of light intensity (radiation flux intensity in the
003 to 007 wave length interval)o Each point plotted respresents a
different leaf level for the hour specified beginning with the top leaf
level of 225 cm at the maximum radiation for that hour and proceeding
downwards in 25 cm increments with decreasing light intensityo Not all
the lower points are plotted for the 0755 and 1755 hours" There are
several interesting observations to be made: a) apparently all leaves

. at any given hour follow the same light response curve no matter their

position in the canopYr at least above the compensation point. b) the
light response curves are remarkably linearc This is not too different
from some light response curves of individual leaves in corn or sugar
caneo c) the light compensation point is directly related in some way
to the level of total photosynthetic activity of the canopy 0 d) the

9
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respiration rate is very low and curiously becomes rather constant once
the compensation point is reached. It appears to be rather insensitive
to temperature since the temperature ranged from: 14°C at 0755; 19°C at
0955; 23°C at 1358; and 19°C at 1755 hours.

Turning back to the differences noted in Figure ~it can be seen in
Figure 9 that the light response curves for both the 0955 and 1358 hours
are alike except for the upper two or three leaf levels at the top of the
canopy. As mentioned above, the 1358 upper leaves might have been under
water stress. Evidently the gross differences in the two curves in
Figure 8 can be fully explained on the basis of a greater radiation flux
at 1358. The incident visible radiation flux intensity at the top of
the crop was 0.51 ca1/cm2/min at 1358 and 0.45 cal/cm2/min at 0955.

On the basis of visible light intensity, the slope of the 0955 and 1358
curves in Figure 9 yields a photo-efficiency of 7.3%. The other two
yield efficiencies greater than 25% during periods of low radiation.

In summary, it should be pointed out that despite the assumptions required
in the momentum balance, the end results seem quite reasonable. This may
be blind luck in the choice of corn. Several reasons can be given as to
why corn might be a lucky choice: 1) first and foremost, corn is a
relatively open and uniform system. (Several subsequent points arise
from these conditions.) 2) Open structure prevents development of large
gradients in the climatic elements. These include light, wind, temperature,
water vapor and carbon dioxide. Thus corn leaves in different portions
of the canopy are not exposed to as wide a variation in climate as leaves
in a compact system such as clover. This preyents~ for example, wide
respiration differences due to wide temperature difference. This also
prevents disease due to wide variation in humidity. 3) Good wind flow
characteristics in corn may favor a high Reynolds numbe~ so that the
assumption of constant drag coefficient is more realistic than in a
compact system. 4) Forced convection in an open system makes more
realistic the assumption that ~ = Kc where "free" convection is probably

not as important to diffusion as in a compact system.
I~

i Probably the energy balance method of determining the diffusivity
~ coefficient is more correct in compact communities, while the momentum

~:: balance method is more applicable to open canopies under good wind
~'Cc

conditions.

10



. .

REFERENCES

Allen, L. H., Jr. and Brown, Kirk W. 1965. Shortwave radiation
in a corn crop. Agron.~. 57:575-580.

Lemon, Edgar R. 19600 Photosynthesis under Field Conditions. II.. An aerodynamic method for determining the turbulent carbon dioxide

exchange between the atmosphere and a corn fieldo Agron. ~o 52:
697-703.

Tarmn, E. and Krzysch, Go 19590 "Beobachtung des Wachstumsfaktors
CO2 in der Vegetationzone." Zeitschrift fUr Acker-und Pflanzenbau
107:275-299.

Wright, Jo Lo and E. R. Lemon. 1966a. Photosynthesis under Field
Conditions. VIII. Analysis of windspeed fluctuation data to
evaluate turbulent exchange within a corn crop. Agron.~. 58:
255-261.

Wright, J. L. and E. R. Lemon. 1966b. Photosynthesis under Field
Conditions. IXo Vertical distribution of photosynthesis within
a corn cropo Agron. ~o 58:265-268.

11



-
. .

MOMENTUM BALANCE

2 th[ kU J Z above top: 't'h = ~ ~10

0 -- --
h

rlh 2
telow top: ~=1h-~C ~FzUZdZ

0
F z (cm2tcm3) 0 u ,.

leaf area den~ity wind speed

Fig. 1. Schematic representation of momentum balance
component measurements in a plant community. Profiles
of leaf surface density (F) and mean wind velocity (u)
are illustrated. Total drag at the top of the
community is indicated by (Th) and drag of the canopy
layer from z to h is indicated by (TZ) at level z. The
drag coefficient is defined as (C). Other symbols are
as found in the text.
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Fig. 8. Efficiency profiles (AQP/QI) of photochemical energy equivalence
per unit of absorbed radiation (O.3-0.7~ wave length) in a cornfield at
indicated hours. Leaf area density (F ) profile presented for reference.

zPositive efficiency is for net photosynthesis and negative efficiency

is for net respiration.
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Fig. 9. Light response curves for corn plant community as indicated by
hour. Radiation flux is incident intensity (0.3-0.7~ wave length).
Photosynthesis and respiration expressed on a leaf area basis ~s CO2
exchange or energy equivalence. Each point at a given hour represents
a given leaf level in the canopy beginning with the top leaves at
225 cm at the highest radiation intensity and progressing downwards into
the canopy in 25 cm increments with decreasing radiation. Not all 1755
and 0755 points near the bottom of the canopy are plotted. Each point
is the "mean" response of all leaves at a given level. Ellis Hollow, N.Y.
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